AD 2004 Flattening of Basic Blocks/Preaccumulation 1

‘Flattening of Basic Blocks for Preaccumulation'

J. Utke

given a sequence of statements: “How can I get

and use a DAG for preaccumulation?”

e where is this needed

e why doesn’t somebody else do it for me ?D
e how is it done

e what makes it ambiguous

e which choices do we have

ACTS project and implementation in OpenAD

- _/

Utke U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 2

/

where do we need it?'

cross country elimination

vertex/edge/face elimination

scope beyond single statement

pre-accumulate Jacobian entries jyq

and propagate forward saxpy (jyz, T, ¥)

or stack them, then reverse through the stack

storing cheaper than recomputes

fewer Jacobian entries than intermediate values, etc.

or scarcity preserving elimination

concentrate on basic blocks (loop body, low level routine with straight line code)

need a DAG

note, can extend beyond basic block scope (resolve side effects)

/

Utke

U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation

/

Shouldn’t the compiler do it?'

e code optimization

YES!

e register allocation
e code generation, etc.
BUT, we do high level source to source transformation
e transformation starts after parsing/canonicalizing/filtering
e compiler code optimization happens at a later stage
e — not available
e unless we go to low level transformation or elevate compiler optimization

We have to do it ourselves.

We can do what we want ©.

-

/

Utke U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 4

4 N
‘ simple flattening I

e sequence of assignments in a basic block

: e front end provides rhs expressions as graphs
simple case:

a1 : z=-(z*x) e algorithm to flatten them into a single graph G:

as : y=z/x — iterate through all assignments in sequence order

(2)] @ — replicate the rhss in G

a1 6>/ 2 G — identify variables

@/ E() * within a rhs, if the front-end hasn’t already done that (size])

AN % across rhss (size])

@___/ — x between rhss and lhss, preserves semantics!

ao — track the most recent assignment to a v
Z/g> @ e variable identification is easy for plain scalar values (syntactic
>~ equivalence)

e otherwise through (flow-sensitive) must alias analysis, i.e. identi-

fication by unique (virtual) address.

o _/

Utke U of C / ANL

AD 2004

Flattening of Basic Blocks/Preaccumulation 5

-

with aliasing:

a1 : *z=—(*z*x)

ao @ y=*z/X

o (VEUA
2 &

i T
@?%<ikﬁ§

]

o

\

‘Why (virtual) addresses?'

we have vectors, pointers, etc. — likely only have may alias

simple algorithm creates new vertex if not uniquely

identifiable

GG is incomplete (missing edges)

may-aliases establish virtual edges € A indicating pos-
sible identification (only want references of rhs vertex
to preceding lhs:)

G'" = (V,EUA) is a set of possible dags, only one

element preserves semantics

resolve ambiguities by splitting

_/

Utke

U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 6

4 N
‘ edge subgraphs I

edge split: e define edge subgraph G = (Vs, Es) of G = (V, E) with
Vs C V and F; C F such that if (v,w) € E; then
v,w € Vi and if (t,u), (v,w) € Es A (u,v) € E then
z (u,v) € By
e define split of G into edge subgraphs G; = (V;, F;) such
® that £ = J E; A E; N E; = (reverse of flatten;
o example: Fy, E5)
g e split (V, F U A) into edge subgraphs G; that
‘ — have A; = (), i.e. locally unambiguous dependency
. \O information
\O R — are (partially) ordered with '<’ such that V(v, w) €
’O A:v e G then w € Gy, G; < Gy and
o — V(t,u) € A:u € G thent € G;,G; < G,

o _/

Utke U of C / ANL

AD 2004

Flattening of Basic Blocks/Preaccumulation

split choices I

splitting

e criteria define a minimal number of splits

e 1 movable edges — split itself isn’t fully defined

in the example:
e A= {(U, w)? <U/7 w>}
e movable edges (¢,u) if B Py v, Puv, Puw.t
e space for optimization, e.g.
>_nim;p + ops(G;); gains 7

® array ops

e minimal cost doesn’t imply minimal split count

(scarcity)

_/

U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation

/ ‘in practice II

w /0 array ops
e pick splits along assignment borders

® preserves semantics

_/

Gin 1 determining Jacobian entries 7
e sequence of G; leads to sequence of Jacobians J;, J =[] J;
AAA AAA
e 7,= PO, PO where ;= | 19 0
\ A A4 0 I
G, Y e I c R% "% s, = |{(v,w) €ET,v € Vj,we Vpj<i<k}
A><A T e 7 are identities between vertices, P,ET), PEC) permute rows /
columns
M 2:1 vy o 7, P,ET), PEC) only known at runtime
e inputs are minimal vertices in G; (easy)
e | maximal vertices | C out(G;) C final lhss
e assuming out(G;) =final lhss complicates the graph
— basic block elimination looses potential
o
Utke U of C / ANL

AD 2004

Flattening of Basic Blocks/Preaccumulation 9

/

~

in practice III

e scalar replacement of pointer/array derefs & alias analysis block

alias++ :

local

e = | ud |-chain information (possible definitions for vertex v)

e we need:

— reference r(ud,) to most recent definition (i.e. assignment) in
this basic block

— determine if definitions are
* ambiguous (inside,both sides, outside), or

* unique (inside, outside)
Jacobian rows:

o -cha,z'n information (possible use of this lhs v)
r(du,) referencing the last use in this basic block, if 3

e v output in G; 7: Ir(duy) Ar(duy) &€ Vi VB r(duy)

missing information forces splits/Jacobian rows (conservative default)

_/

can degenerate to statement level pre-accumulation

Utke

U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 10

/ ‘Weird cases ' \
N/ 7 i] non-maximal dependent :

V[e vertex elimination requires vertex/edge
{ JY
X duplication

o o
(§ \ e edge elimination has constraints to back

.
/\ < \ > elimination steps

e face elimination not affected

C C
= x:
C C
e standalone vertex — filtered out

1 e independent/dependent merge — insert

\ trivial edge — constant folding /

Utke U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 11

4)

subroutine calls, extending scope'

SR call treatment:
e side effect free?
e user defined black box?
extending the scope:
e no restrictions on du/ud chains
e looking at loops !

e handling branches and inlining 7

\ /

Utke U of C / ANL

AD 2004

Flattening of Basic Blocks/Preaccumulation

-

‘example, 131 Verticesl

)
l
¢ \\i
V
|

\

S o
i
|G

i
o

‘L‘!‘?i ““"bﬁ‘

U of C / ANL

AD 2004 Flattening of Basic Blocks/Preaccumulation 13

4 'Summary I A

implemented and used in OpenAD

e front-end parses code and provides intermediate represen-

tation

e OpenAnalysis component provides alias, ud/du chain in-
cluded in IR

e algorithm builds DAGs
e heuristic approximates optimal elimination sequence

e algorithm generates partial calculation and elimination

steps code to IR
e algorithm adds saxpy calls to IR

e front-end unparses IR — ad code

Higher level approaches depend on coding style

o _/

Utke U of C / ANL

